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Rate-dependent propagation of cardiac action potentials in a one-dimensional fiber
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Action potential duratiofAPD) restitution, which relates APD to the preceding diastolic inte(iza), is a
useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing
protocols lead to different APD restitution curv@®C9. This phenomenon, known as APD rate dependence, is
a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also
plays an important role in the spatiotemporal dynamics of cardiac tissue. We present results concerning
rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our
numerical simulations show that, independent of the amount of memory in the tissue, the wave-back velocity
exhibits pronounced rate dependence and the wave-front velocity does not. Moreover, the discrepancy between
wave-back velocity RCs is most significant for a small DI. We provide an analytical explanation of these
results, using a system of coupled maps to relate the wave-front and wave-back velocities. Our calculations
show that rate-dependent wave-back velocity can be present even if neither APD nor wave-front velocity
exhibits rate dependence.
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I. INTRODUCTION of the most commonly used pacing schemes are the dynamic

When a cardiac cell is depolarized by an electrical stimu2nd S1-S2 pacing protocols. Under the dynarsteady-
lus, it exhibits a prolonged elevation of transmembrane poStaté protocol, pacing is performed at a constant basic cycle
tential known as an action potential. We define the actior{en9thB until steadyfstate IS rgachﬁdo beat-to-beat varia-
potential duratiorfAPD) as the time required for the cell to 10N in APD or D). After recording the steady-state DI-APD

achieve 80% repolarization following a depolarizing stimu-Pa", B is changed by an amour and the process is re-

lus. The refractory period between the end of an action poP€ated. The dynamic RC is constructed by plotting all
tential and the application of a subsequent stimulus is callegi¢ady-state DI-APD pairs obtained from the dynamic pacing

the diastolic intervalDl). It is known that APD restitution protocol over arange @ vz_;llues. Th_e Sl-SQS_tandargi pro-
(the dependence of the APD on preceding Blof funda-  (Ocol also begins with pacing at a fixed basic cycle lertgjth
mental importance in paced cardiac dynamics. In particulal{S1 interva) until steady state is reached. Then, an S2 stimu-
studies[1,2] show that the slope of the APD restitution curve [US iS applied at an intervas, after the final S1 stimulus.
(RO) is linked to the onset of alternans, an abnormal cardiadetting 9=B1~B, the S1-S2 RC is obtained by plotting the
rhythm characterized by long-short variation of APD, which~APD following the S2 stimulus versus the preceding DI for

may lead to ventricular fibrillation and sudden cardiac deatflifferent values ofé. Note that there is only one dynamic
[3-5]. RC, whereas each different S1 pacing interval can yield a

Experimental6—8| and analytica[9] investigations have distinct S1-S2 RC. For the purposes of this paper, we obtain

shown that different pacing protocols lead to different APDONIY local S1-82 RCg(4| small relative to Sifor different
RCs, a phenomenon sometirhé&siown as APD rate depen- values of the S1 interval. In particular, following6] we
dence. Several studig40-17 indicate that the origin of 2PPly one shortB;=B-4) and one londB,=B+¢) pertur-
APD rate dependence is the presence of memory in cardid@tion at each different value & o
tissue. That is, the APD depends not only upon the preceding '€ connection between rate-dependent APD restitution
DI but also on the previous history of paced cardiac tissue?"d memory is illustrated in Fig. 1, which shows APD RCs

Memory appears to be a generic feature of cardiac musclaPtained from numerical simulations using two different

since it has been reported in humdBgand various animals 1Onic models(see Sec. )iof the cell membrane. Figure@

[7,13-15. is generated using a two-current modél7,18 with no
Testing for rate dependence involves the use of multipldnemory: the dynamic and S1-S2 RCs are indistinguishable.

pacing protocols and comparison of the resulting RCs. Twd 19uré 1b) is generated using a three-current ionic model
[19,20 with some memory. One can see from Figh)lthat

segments of S1-S2 R@dashed curveslo not coincide with

the dynamic RGsolid curve for small DI values. The split-

ting between the dynamic and S1-S2 RCs is the manifesta-
'As in [9,16], our use of the phras&PD rate dependencaiways  tion of APD rate dependence.

refers to the dependence of the APD RC upon the pacing protocol, Pacing the proximal end of a one-dimensional fiber of

not the dependence of the APD upon the pacing rate. tissue results in a train of propagating action potentials. In
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300 @ ion channels. The rate of change of the transmembrane volt-

age is obtained by summing all ionic currents and dividing
by the membrane capacitance. The ion channels act as gates
that regulate the permeabilities of ions, most notably sodium,
potassium, and calcium. Hence, ionic models are presented
290 dynamic and $1-S2 RCs as systems of ordinary differential equations that govern
transmembrane voltage and gate variables.

In the case of a one-dimensional fiber, electrical coupling
180 ! . L can be modeled by the inclusion of a diffusion term. The
50 150 250 35 450 result is a reaction-diffusion partial differential equation
310 known as the cable equation:

260 |-

APD (ms)

adv Fv |
o70 =k 5- 28 0=xs<L, (1)
dynamic RC at axs  Cy

APD {(ms)

'S1-S2 RC for S1 = 300 ms wherev denotes transmembrane voltageneasures distance
from the stimulus siteC,, is membrane capacitance,is a
$1-82 RC for S1 = 260 ms diffusion coefficient, andl, is the sum of all ionic currents.
190 \ ! ! The number of currents varies depending upon the complex-
10 70 130 190 250 ity of the ionic model. The diffusion coefficient incorporates
DI (ms) membrane capacitance, cell surface-to-volume ratio, and
longitudinal resistivity of cardiac muscle tissue. In all of

FIG. 1. Typical APD restitution curves obtained using dynamicoyr  numerical ~ simulations C,=1uF cm2  and «
and S1-S2 pacing protocold =40 ms,5=+20 m9 for two differ- =0.001 ¢ msL Neumann boundary conditions,(0,t)
ent ionic membrane m0d8|@) A two-(_:urrent model(b) A three- =u,(L,1)=0 are imposed at both ends of the cable.
c(t;rrehnt moderll. Thef d)(/jnf?mlc IR@IOHOD ?g(i local $1-S2 RCs To investigate rate-dependent propagation, we perform
(dashegiare shown for different values of S1. numerical simulations of Eql). We apply both dynamic

and S1-S2 pacing protocols at one end of a cable, and mea-
this spatially extended setting, both the APD and the propagyre the wave-front and wave-back velocities of each propa-
gation speed of a pulse are influenced by the preceding pulsgating pulse. By analogy with APD rate dependence, veloc-
tion in that it relates the speed of an action potential at gead to different velocity RCs.
given site to the DI at that site. Several auth@$-23 have Since memory is responsible for APD rate dependence, it
noted that abrupt changes in the pacing rate lead to discreps natural to hypothesize that memory also leads to wave-
ancies between the wave-front and wave-back velocities. Fafont and wave-back velocity rate dependence. Consequently,
this reason, we will always distinguish between wave-frontye use two different ionic models in our numerical simula-
(or activation front velocity and wave-backor recovery tions: a two-current ionic mod¢lLg] with no memory and a
front) velocity of propagating action potentials. three-current ionic modgR0] with some memory.

In this paper, we investigate the rate dependence of wave- The details of the numerical experiments are as follows.
front and wave-back velocities of propagating action potenysing a cable of length =10 cm, we solve Eq.1) numeri-
tials in a one-dimensional fiber of cardiac cells. Using nu-c|ly with an operator-splitting metho@x=0.01 cm, At
merical simulations of different ionic membrane models=0 01 mg. Stimuli are applied over a 1 mm region at the
(with and without memorywe demonstrate that the wave- proximal (x=0) end of the fiber using both the dynamic and
back velocity exhibits pronounced rate dependence and thg1_s protocols described in the Introduction. In all simula-
Wave-fro_nt ve!ocny does natSec. I). We derive an analyti- tions, we useA=40 ms andd=+20 ms. Pacing results in a
cal relationship between wave-front and wave-back velociyain of pulses that propagate left to right in the fiber. Mea-
ties by modeling cardiac dynamics using a system of coupled,;;ements of DI, APD, wave-front speed, and wave-back
maps with an arbitrary amount of memory. We show thalgpeed are taken at=2.5 cm. The position of a pulse wave
APD restitution, not memory, leads to wave-back veloCityfront is defined as the value for which the transmembrane
rate dependencgSec. Il). Consequently, rate-dependent yoitage is ~60 mV andly/dx<0. Likewise, the wave-back
wave-back velocity can be present even if neither APD NOKosition is defined as the value at whichv=-60 mV and
wave-front velocity exhibits rate dependence. We providey, /dx>0. Linear interpolation is used to improve tracking
conclusions and discussion in Sec. IV. An Appendix on theyt wave-front and wave-back positions. Speeds are then
two-current ionic model is included for reference. computed by recording the time required for wave fronts and
wave backs to traverse a 1-mm-wide interval centerexl at
=2.5 cm. For illustration purposes, Fig. 2 shows a projection
of a solution of Eq(1) (with two-current ionic modeglonto

Typically, the cardiac action potential is modeled by con-the xt plane. The second and third action potentials obtained
sidering ionic currents that flow across the cell membrane vidy pacing an initially quiescent fiber are shown. Different

230

Il. RATE-DEPENDENT VELOCITY:
NUMERICAL RESULTS
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0.51
—\waveback @)
wavefront g 0.49 |-
= waveback = .
H dynamic and $S1-S2 RCs
wavefront O 047r
,__4
X i 0.45 L 1
FIG. 2. Numerical solution of Eq1) with the two-current ionic 0.52 ©)
model.
: g 048[ i
shades of gray correspond to different transmembrane volt- £ dynamic RC
ages, with black corresponding to the rest potential. Note that % '," S1-52 RC for S1 = 300 ms
projecting the wave fronts and wave backs ontoxhplane og 04al 7
forms a sequence of curves. i ™ 81-82 RC for S1 < 260 ms
Results of numerical simulations of E(.) with the two- ‘
current ionic modelno memory are presented in Fig. 3, 0.40 . .
which shows wave fronfFig. 3a@)] and wave bacKFig. 0 70 140 210
3(b)] velocity RCs. One can see from Figagthat the wave- DI (ms)

front velocity RCs resulting from different pacing protocols FIG. 4. Wave-front and back velocity RCs obtained f
are indistinguishable. Thus, there is no significant rate depen- '~ = Yvave-lront and wave-back velocity kLS obtained rom
dence if velocities are measured at the wave front. HowevefUme'ical simulation of Eqcl) with three-current jonic modelA
one can see from Fig.(B) that segments of S1-S2 wave- 240 ms, 6=+20 m9. Velocities were measured at2.5 cm.(a)
back velocity RCYd gr'] d Sdg incid ith th Wave-front velocity RCs(b) Wave-back velocity RCs. The dy-
ack ve ocity dashe _Curve 0 not coinciae with the namic RC is solid and the local S1-S2 RCs are dashed.

dynamic wave-back velocity RGolid curve. As in the case
of APD rate dependenagee Fig. 1, the splitting between o .
wave-back velocity RCs is more pronounced for small val-"esults are qualitatively similar to the two-current model re-
ues of DI. sults shown in Fig. 3.

Wave-front and wave-back velocity RCs obtained from . 1here are two important points that we wish to empha-

numerical simulations of a cable with the three-current ionicSi2€- First, rate-dependent wave-back velocity restitution

model (that has some memonare presented in Fig. 4. The does not depend upon the presence of memory in the tissue,
as evidenced by our two-current model simulations. Second,

0.57 rate-dependent wave-back velocity is more pronounced for
@ small values of DI. In what follows, we provide an analytical
& explanation of these findings.
£ 050
= Ill. RATE-DEPENDENT VELOCITY:
& oasf dynamic and $1-52 RCs ANALYTICAL RESULTS
In this section, we derive a relationship between wave-
0.36 L L ) front and wave-back velocities. We approximate the dynam-
ics of Eq. (1) using mappings instead of ionic models, an
0.59 ®) approach similar to[21,24—26. Our analysis shows that
wave-back velocity differs from wave-front velocity as a re-
2 sk . dvnamic RC sult of spatial vafia_ttion in APnge Eq«(8) below]. Hence,
E Y apart from the trivial case in which the APD RCs are con-
% 5y, stant, a rate-dependent wave-back velocity can exist even if
Og 041}F S the tissue lacks both memory and rate-dependent wave-front
I $1-S2 RC for S1 = 340 ms velocity.
/T $1-82 RC for S1 = 300 ms Mapping models that express the APD in terms of preced-
0.32 . . . ing DI and APD values have been employed by many au-
60 110 160 210 260

thors[1,11,12,20,2Fto describe local tissue dynamics. For
example, based on experiments with frog tissue, Nolasco and
Dahlen[1] proposed a simple mapping model of the form

DI (ms)

FIG. 3. Wave-front and wave-back velocity RCs obtained from
numerical simulation of Eq(l) with two-current ionic modelA A..1=F(D,), 2)
=40 ms, 6=+20 m9. Velocities were measured at2.5 cm.(a)

Wave-front velocity RCs(b) Wave-back velocity RCs. The dy- whereA, andD,, denote thenth APD and DI values, respec-
namic RC is solid and the local S1-S2 RCs are dashed. tively. Using asymptotics, Mitchell and Schaeffé@8] derive
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B ) Let us also assume that the velocity of {ime-1)st wave
front, Ciond(An(X),Dn(X)), depends upon precedingocal)
D1 ) APD and DI values. This velocity is computed by inverting
B. () the slope ofdp1(X):
- debne1(X) 1
= = G(An(X),Dy(x)). (6)
9, (x) dX  Chon(An(X),Dn(X) e
Using the above framework, the wave-back velociy;,
is completely determined by the wave-front velocity. Refer-
X ring to Fig. 5, note that
FIG. 5. Schematic representation of the wave frogslid Bre1(X) = Ppea(X) + Ana(X). (7)

curveg and wave backgdashed curvgsn Fig. 2. . L . . . .
3 « ® g Differentiating Eq.(7) with respect tax yields a relationship

. . . between wave-front and wave-back velocities. Simply stated,
a mapping of the forni2) from the governing equations of a Py

two-current ionic model. A similar analysis by Tolkacheata 1 1
al. [20] shows that the three-current Fenton-Karma ionic =
model[19] leads to a mapping with two arguments:

A..=F(A.D,) 3) which shows that the wave-back velocity is the same as the
n+l e wave-front velocity modified by the spatial variation in the

In general, the number of arguments Bfdetermines how APD. Assuming that the APD RCs are nonconstant, it fol-
much memory is present. The mapping mo@® has no lows that even in the absence of both memory and rate-
memory, and all APD RCs coincide as in Fig@l The dependent wave-front velocity, the fiber can still exhibit rate-
mapping mode(3) has some memory, and the dynamic anddependent wave-back velocity. To make E@®&) more
S1-S2 RCs are different as in Figtbl. Below, we consider explicit, we how compare wave-front and wave-back veloci-
mappings in which has many arguments. ties for both the dynamic and S1-S2 protocols.

We now generalize mapping models appropriate for a
patch to the case of one-dimensional fibers. In what follows,
we assume that wave backs are not greatly affected by elec- ) . o
trotonic coupling so that repolarization is driven by local Under the dynamic pacing protocol, pacing is performed
effects only. That is, using the terminology [#8,29, we  at a constant basic cycle lendgBhat x=0 until steady state is
Consider phase wave backs as opposed to triggered Wa%ached. In what fO”OWS, we .aSSUIT.]e that a 11 Steady-_State
backs. This assumption allows us to apply a mapping locallyesponse results from dynamic pacing. That is, every stimu-
at eachx along the fibefsee Eq(4) below]. Ius.pr.odupes an action potential and there is no beat-to-beat

We represent the wave fronts and wave backs in solution¥ariation in the APD or DI. Note thai,(x) and B,(x) are
of Eq. (1) schematically. Refer to Fig. 5, which shows the parallei2 lines in thext plane if a 1:1 steady state is reached.
projection of a particular level set of the surface in Fig. 2 When steady state is reached, the vect{x) andD,(x)
onto thext plane. The curves in Fig. 5 are identified with the are constant:
sequence of wave fronts and wave backs. We defif(&)

+ALa(X), (8

Chack  Cront

A. Dynamic pacing protocol

[B,(X)] as the time at which theth wave front(wave back A =A"=(A LA, A, (9)
reachex. . . .
Let us assume that, at eaxkalong the fiber, the APD can Dyx)=D =(D',D’,...D),

be represented as a function of an arbitrary number of pre- P . . .
ceding APDs and DIs in the form y P nd (A",D") is the fixed point of Egq.(4). Plotting

Cront(A",D”) versusD”, we obtain a point on the dynamic
Ani1(X) = F(A(X),Dn(x)), (4)  wave-front velocity RC. The curveg,,;(x) and ¢p.,(x) have
the same slope since they are parallel at steady state:

i.e., an arbitrary amount of memory is included. Here, . . . .
y y Bri1(X)=dp1(X)+A". Therefore, since there is no spatial

An(X) = (Ay(X), Aq-1(X), - Anri-m(X)), (5  variation in the APD, the dynamic wave-back and wave-front
velocity RCs are identical. Hence, from now on we refer to

Dn(X) = (Dp(X),Dp-1(X), ... .Dps14(X)), the dynamic velocity RC and use the notatiogyy,
:Cdyn(D*)-

andm=0 andk=1 are integers characterizing how many
preceding states are taken into account in the mapping
model. Since many previous states are involved, €.
makes sense only fan,k<n. Note thatm=0, k=1 corre- %In the ordinary differential equations derived in Sec. I, pacing is
sponds to the simplest mapping model E), the case of no  applied at thex=0 boundary, not over a small intenj@l, e]. There-
memory. The casen=1, k=1 corresponds to a mapping of fore, in steady state, the wave fronts and wave backs really are
the form of Eq.(3) with some memory. straight lines.

Defining the cycle length as

061906-4
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______ D,(0)=B;-A". (16)
---------------- B |
m Equation(13) reduces to
dD,(x . x
_____________ dDx) _ G(A",D,(x)) -G, (17)
___________________ dx
[ where G*:G(A*,D*):cajn. Linearizing Eq.(17) about the
premature ; o h
stimulus n point (A",D"), we have
X dD,(x .
: 9D __ MDn(x) =D"], (18
FIG. 6. Deflection of thén+1)st wave front and wave back due dx
to a prematuréB; <B) S2 stimulus. The shortened diastolic inter- h
val at the stimulus site slows the propagation speed. Solid curveyN€r€
represent wave fronts and dashed curves represent wave backs. G
A= - . (19
dDnl(a* b9
Cn(x) = An(x) + Dn(x) = ¢n+1(x) - ¢n(x)a (10) X . .
. Sincecyn typically depends monotonically on the argument
it follows from Eg. (6) that D, [see Fig. )], it is natural to assume that>0. The
solution of Eq.(18) with the boundary conditiol16) is
d
3509 = G(AL(),D4(x) = G(An-1(¥), Dp-1(x) . (1) D0 =D" - 8. 20
According to Eqs(10) and(4), the cycle length also satisfies L€t Ciis and ¢z, denote the wave-front and wave-back
the algebraic condition velocities of the action potential generated by the S2 stimu-
lus. In order to compute;iz, observe thatsee Fig. 6
Cn(X) =F(An-1(x),Dp-1(X)) + Dy(x), (12
" e " bre1(X) = Br(X) + D). (2D)

and thus Eqsc11) and(12) imply that We know thate,(x) and B,(x) are parallel since they repre-

d sent the wave front and wave back associated with the final
&[F(An—l(x)aDn—l(X)) +Dp(x)] S1 stimulus. ThereforedB,/dx=d¢,/dx=G", and differen-
tiating Eq.(21) with respect tax gives
=G(AL(X),Dn(X)) = G(A-1(X),Dpa(x). (13) 1
SinceC,(0)=B for all n under the dynamic pacing protocol, Cfsréznt: G +one ™ (22

we obtain the following boundary condition »t0: )
According to Eq.(15), the only nonconstant argument of

Dn(0) =B - F(A,-1(0),D;-1(0)) . (14)  the functionF is D,(x). Therefore, differentiating Eq(7)

The sequence of equations Efj3) can be solved iteratively with respect tax gives

to construct a diagram similar to Fig. 5. If the vectors of  dg,.; d¢n, JF dD, . o F
functions A,(x) and D,,_;(X) are known, we can solve Eq. ax - dx aDnK‘G +one| 1+ WA
(13) to determineD,,(x). Note thatA,;1(x) can then be com-

puted by applying Eq(4). (23
which implies that
B. S1-S2 pacing protocol . 1
In the S1-S2 protocol, tissue is paced at a basic cycle Coack™ G+ + Ne (1 +aFIaD,) (24

lengthB until steady state is reached. Then, an S2 stimulus is ) o _ )

introduced at an intervaB,=B+ 5 following the last S1  The partial derivativedF/dD, in Eq. (24) is evaluated at
stimulus and the response to the S2 stimulus is measured. {A ;D —3™,D",...,D). Equationg22) and(24) are ana-
what follows, we assume that the S2 stimulus is applied prelytical expressions for the wave-front and wave-back veloc-
maturely (B;=B-§) following a train ofn S1 stimuli. The ity for the S1-S2 pacing protocol.

S2 stimulus causes a deflection in trer 1)st wave front Comparing Egs(22) and (24) again demonstrates that
and wave back as shown in Fig. 6. APD restitution, not memory, is responsible for the rate de-
These assumptions imply that pendence we study here. Indeed, the only difference between
expressiong22) and (24) is the presence of the multiplier
A(X)=A", (15 (1+dF/¢D,) in the formula for the wave-back velocity. The
partial derivativedF/dD,, in Eq. (24) represents the slof,
D,(X) = (D,(x),D, ... DY), of the S1-S2 APD RC as demonstrated[8]. As the DI
decreases$;, typically increases, thereby increasing the dis-
and yield the boundary condition crepancy between the wave-front and wave-back velocities.
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0.57 tions show that both the two- and three-current models ex-
hibit rate-dependent wave-back velocity, whereas neither
model exhibits rate-dependent wave-front velocity. The fact
that even a memoryless two-current model that lacks rate-
dependent wave-front velocity still exhibits rate-dependent
wave-back velocity seems surprising at first. To explain this
phenomenon analytically, using an approach similar to that
of [21,24-26, we derive a relationship between the wave-
front and wave-back speeds. Although the dynamic wave-
front and wave-back velocity RCs are identical, the fact that
Egs.(22) and(24) differ shows that S1-S2 velocity RCs need
not coincide. Therefore, if the wave-frofwave-back veloc-
ity lacks rate dependence, then the wave-b@eive-frony
velocity must exhibit rate dependence. The magnitude of the
Iy term (1+0F/dD,) in Eq. (24) determines the difference be-
#7 51-82 RG for S1 = 300 ms tween the S1-82 \_/vave—_front and wave-back velocities. Since
g the partial derivatives;,=dF/ <9D,] represents the slope of an
03l $1-52 RC for $1 = 260 ms S1-S2 APD RC, the greatest discrepancy between the wave-
) 60 110 160 210 260 front and wave-back velocities should occur at small DI
DI (ms) (whereS,;, is greatest This prediction is consistent with the
results of our numerical simulationifigs. 3 and 4
FIG. 7. Wave-front and wave-back velocity RCs generated us-
ing EQs.(22), (24), (A3), and(A9) (A=40 ms,6=+20 m9. Veloci-
ties were measured at2.5 cm.(a) Wave-front velocity RCs: the ACKNOWLEDGMENTS

dynamic and S1-S2 curves appear to coincit.Wave-back ve- . .
locity RCs: the dynamic curve is solid and local S1-S2 curves are We gratefully acknowledge the financial support of the
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Finally, regardless of how much memory is included in the
mapping model, Eq922) and(24) depend uporD,(x) and

no other preceding states. APPENDIX
A detailed analysis of the two-current model equations

C. An example: Rate-dependent velocity (9)and the two- . .
appears irf18]. With the two-current model, Eql) reads

current model

In this subsection, we explain how to apply E¢&2) and v _ ﬁ + h 21 -p) - v (A1)
(24), using the two-current model as an example. Both Egs. ot a2 va v Tout.
(22) and(24) require that we know formulas for the dynamic
velocity RC (since G' = ayn) @nd the functionF. Leading- 1-h
order expressions fdf andcy,, can be derived analytically dh v U< Uity
for the two-current modelsee the Appendix an _ ) Topen (A2)
The dynamic velocity RC is provided by EGA9). Com- dt __h S
crity

bining Eqs.(22) and(A9), we generate all S1-S2 wave-front Telose
velocity RCs. Likewise, combining Eqg4), (A3), and(A9) )
allows us to construct all S1-S2 wave-back velocity RCs. Wherev is the transmembrane voltagecaled to range be-

All of the analytically derived RCs are shown in Fig. 7. tween 0 and Landh is a gate variable. The parameters
Figure 7a) shows all wave-front velocity RCs. The dynamic Tclose Tour @Nd 7open are time constants associated with dif-
and S1-S2 wave-front velocity RCs are indistinguishableferem phases of the action potential. The gate opens or closes
The wave-back velocity RCs are shown in Figh)7 Note ~ according to whetheo exceeds the threshold voltagg;.
the presence of rate dependence, as evidenced by the Sp|'|'1yp|cal choices for the time constants and critical voltage are
ting of the dynamic(solid) and S1-S2(dashegl RCs. We  7in=0-1 MS, 75,=2.4 MS, Tope= 130 MS, 7jo5= 150 ms, and
remark that Fig. 7 shows excellent quantitative agreemerffcrit=0.13. . ) i .
with the results of numerical simulations shown in Fig. 3. A leading-order estimate of the APD RC is derived in

[18]. If the time constants satisfy an asymptotic condition
Tin << Tout<< Topen Tclose then
IV. CONCLUSIONS

D)

We have demonstrated that a rate-dependent wave-back Ans1=F(Dy) = Tclosé“( o
velocity can exist even in the absence of both memory and min

rate-dependent wave-front velocity. Our numerical simulato leading order, where
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_ ~Dn/ Topen

hs(Dn) - 1 (1 hmm)e open, (A4) ZLV,, _ V, + h*V(V_ _ V)(V— V+) — 0’ (A6)
CaynTin
and hyin =47,/ Toye . . L. .

To derive a leading-order estimateay,, we follow Mur- where the primes denote differentiation with respecf &mnd
ray [30]. Assume the fiber is paced at a constant basic cycle 1 h.
length until steady state is reached so that all pulses propa- Vi= ‘<1i 1- r?'”)
gate with speedy,,=cq4yn(D"). We seek traveling wave train

-2
solutions to Eq(A1). In the neighborhood of a wave front, We remark thatv/_ is an unstable equilibrium of EqA6)

(A7)

introduce the coordinate corresponding to the threshold for excitation, avdis an
unstable equilibrium associated with the excited state. We
1 X seek solutions to EqA6) such thatv(¢§) —0 asé— —» and
g:—(t+—), (A5) V(§)—V, as ¢—». It is possible to find a solution of a
Tin Cayn simpler differential equation

where the speedyy, is to be determined. Assume that Vi=-avv -Vl (A8B)
v(x,t)=V(§) andh(x,t)=H(¢). Sincer, is small relative to that also satisfies EgA6) for unique values of the constant
the time constants in EqA2), we may safely approximate a and the speedg, Substituting(A8) into Eg. (A6), one
the value ofh by a constant in the narrow wave-front region: finds that
h=~h"=hy(D"). Insertingv(x,t)=V(&) into Eq.(Al), we ob- 1 T
tain an ordinary differential equation Cayn= (5V+ - V_> \/ — (A9)
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