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Action potential duration(APD) restitution, which relates APD to the preceding diastolic interval(DI), is a
useful tool for predicting the onset of abnormal cardiac rhythms. However, it is known that different pacing
protocols lead to different APD restitution curves(RCs). This phenomenon, known as APD rate dependence, is
a consequence of memory in the tissue. In addition to APD restitution, conduction velocity restitution also
plays an important role in the spatiotemporal dynamics of cardiac tissue. We present results concerning
rate-dependent restitution in the velocity of propagating action potentials in a one-dimensional fiber. Our
numerical simulations show that, independent of the amount of memory in the tissue, the wave-back velocity
exhibits pronounced rate dependence and the wave-front velocity does not. Moreover, the discrepancy between
wave-back velocity RCs is most significant for a small DI. We provide an analytical explanation of these
results, using a system of coupled maps to relate the wave-front and wave-back velocities. Our calculations
show that rate-dependent wave-back velocity can be present even if neither APD nor wave-front velocity
exhibits rate dependence.
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I. INTRODUCTION

When a cardiac cell is depolarized by an electrical stimu-
lus, it exhibits a prolonged elevation of transmembrane po-
tential known as an action potential. We define the action
potential duration(APD) as the time required for the cell to
achieve 80% repolarization following a depolarizing stimu-
lus. The refractory period between the end of an action po-
tential and the application of a subsequent stimulus is called
the diastolic interval(DI). It is known that APD restitution
(the dependence of the APD on preceding DI) is of funda-
mental importance in paced cardiac dynamics. In particular,
studies[1,2] show that the slope of the APD restitution curve
(RC) is linked to the onset of alternans, an abnormal cardiac
rhythm characterized by long-short variation of APD, which
may lead to ventricular fibrillation and sudden cardiac death
[3–5].

Experimental[6–8] and analytical[9] investigations have
shown that different pacing protocols lead to different APD
RCs, a phenomenon sometimes1 known as APD rate depen-
dence. Several studies[10–12] indicate that the origin of
APD rate dependence is the presence of memory in cardiac
tissue. That is, the APD depends not only upon the preceding
DI but also on the previous history of paced cardiac tissue.
Memory appears to be a generic feature of cardiac muscle
since it has been reported in humans[8] and various animals
[7,13–15].

Testing for rate dependence involves the use of multiple
pacing protocols and comparison of the resulting RCs. Two

of the most commonly used pacing schemes are the dynamic
and S1-S2 pacing protocols. Under the dynamic(steady-
state) protocol, pacing is performed at a constant basic cycle
lengthB until steady state is reached(no beat-to-beat varia-
tion in APD or DI). After recording the steady-state DI-APD
pair, B is changed by an amountD and the process is re-
peated. The dynamic RC is constructed by plotting all
steady-state DI-APD pairs obtained from the dynamic pacing
protocol over a range ofB values. The S1-S2(standard) pro-
tocol also begins with pacing at a fixed basic cycle lengthB
(S1 interval) until steady state is reached. Then, an S2 stimu-
lus is applied at an intervalB1 after the final S1 stimulus.
Settingd=B1−B, the S1-S2 RC is obtained by plotting the
APD following the S2 stimulus versus the preceding DI for
different values ofd. Note that there is only one dynamic
RC, whereas each different S1 pacing interval can yield a
distinct S1-S2 RC. For the purposes of this paper, we obtain
only local S1-S2 RCs(udu small relative to S1) for different
values of the S1 interval. In particular, following[16] we
apply one shortsB1=B−dd and one longsB1=B+dd pertur-
bation at each different value ofB.

The connection between rate-dependent APD restitution
and memory is illustrated in Fig. 1, which shows APD RCs
obtained from numerical simulations using two different
ionic models(see Sec. II) of the cell membrane. Figure 1(a)
is generated using a two-current model[17,18] with no
memory: the dynamic and S1-S2 RCs are indistinguishable.
Figure 1(b) is generated using a three-current ionic model
[19,20] with some memory. One can see from Fig. 1(b) that
segments of S1-S2 RCs(dashed curves) do not coincide with
the dynamic RC(solid curve) for small DI values. The split-
ting between the dynamic and S1-S2 RCs is the manifesta-
tion of APD rate dependence.

Pacing the proximal end of a one-dimensional fiber of
tissue results in a train of propagating action potentials. In

*Electronic mail: jcain@math.duke.edu

1As in [9,16], our use of the phraseAPD rate dependencealways
refers to the dependence of the APD RC upon the pacing protocol,
not the dependence of the APD upon the pacing rate.
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this spatially extended setting, both the APD and the propa-
gation speed of a pulse are influenced by the preceding pulse.
Conduction-velocity restitution is analogous to APD restitu-
tion in that it relates the speed of an action potential at a
given site to the DI at that site. Several authors[21–23] have
noted that abrupt changes in the pacing rate lead to discrep-
ancies between the wave-front and wave-back velocities. For
this reason, we will always distinguish between wave-front
(or activation front) velocity and wave-back(or recovery
front) velocity of propagating action potentials.

In this paper, we investigate the rate dependence of wave-
front and wave-back velocities of propagating action poten-
tials in a one-dimensional fiber of cardiac cells. Using nu-
merical simulations of different ionic membrane models
(with and without memory) we demonstrate that the wave-
back velocity exhibits pronounced rate dependence and the
wave-front velocity does not(Sec. II). We derive an analyti-
cal relationship between wave-front and wave-back veloci-
ties by modeling cardiac dynamics using a system of coupled
maps with an arbitrary amount of memory. We show that
APD restitution, not memory, leads to wave-back velocity
rate dependence(Sec. III). Consequently, rate-dependent
wave-back velocity can be present even if neither APD nor
wave-front velocity exhibits rate dependence. We provide
conclusions and discussion in Sec. IV. An Appendix on the
two-current ionic model is included for reference.

II. RATE-DEPENDENT VELOCITY:
NUMERICAL RESULTS

Typically, the cardiac action potential is modeled by con-
sidering ionic currents that flow across the cell membrane via

ion channels. The rate of change of the transmembrane volt-
age is obtained by summing all ionic currents and dividing
by the membrane capacitance. The ion channels act as gates
that regulate the permeabilities of ions, most notably sodium,
potassium, and calcium. Hence, ionic models are presented
as systems of ordinary differential equations that govern
transmembrane voltage and gate variables.

In the case of a one-dimensional fiber, electrical coupling
can be modeled by the inclusion of a diffusion term. The
result is a reaction-diffusion partial differential equation
known as the cable equation:

] v
] t

= k
]2v
] x2 −

I total

Cm
, 0 ø x ø L, s1d

wherev denotes transmembrane voltage,x measures distance
from the stimulus site,Cm is membrane capacitance,k is a
diffusion coefficient, andI total is the sum of all ionic currents.
The number of currents varies depending upon the complex-
ity of the ionic model. The diffusion coefficient incorporates
membrane capacitance, cell surface-to-volume ratio, and
longitudinal resistivity of cardiac muscle tissue. In all of
our numerical simulations Cm=1mF cm−2 and k
=0.001 cm2 ms−1. Neumann boundary conditionsvxs0,td
=vxsL ,td=0 are imposed at both ends of the cable.

To investigate rate-dependent propagation, we perform
numerical simulations of Eq.(1). We apply both dynamic
and S1-S2 pacing protocols at one end of a cable, and mea-
sure the wave-front and wave-back velocities of each propa-
gating pulse. By analogy with APD rate dependence, veloc-
ity rate dependence means that different pacing protocols
lead to different velocity RCs.

Since memory is responsible for APD rate dependence, it
is natural to hypothesize that memory also leads to wave-
front and wave-back velocity rate dependence. Consequently,
we use two different ionic models in our numerical simula-
tions: a two-current ionic model[18] with no memory and a
three-current ionic model[20] with some memory.

The details of the numerical experiments are as follows.
Using a cable of lengthL=10 cm, we solve Eq.(1) numeri-
cally with an operator-splitting method(Dx=0.01 cm, Dt
=0.01 ms). Stimuli are applied over a 1 mm region at the
proximal sx=0d end of the fiber using both the dynamic and
S1-S2 protocols described in the Introduction. In all simula-
tions, we useD=40 ms andd= ±20 ms. Pacing results in a
train of pulses that propagate left to right in the fiber. Mea-
surements of DI, APD, wave-front speed, and wave-back
speed are taken atx=2.5 cm. The position of a pulse wave
front is defined as thex value for which the transmembrane
voltage is −60 mV anddv /dx,0. Likewise, the wave-back
position is defined as thex value at whichv=−60 mV and
dv /dx.0. Linear interpolation is used to improve tracking
of wave-front and wave-back positions. Speeds are then
computed by recording the time required for wave fronts and
wave backs to traverse a 1-mm-wide interval centered atx
=2.5 cm. For illustration purposes, Fig. 2 shows a projection
of a solution of Eq.(1) (with two-current ionic model) onto
the xt plane. The second and third action potentials obtained
by pacing an initially quiescent fiber are shown. Different

FIG. 1. Typical APD restitution curves obtained using dynamic
and S1-S2 pacing protocols(D=40 ms,d= ±20 ms) for two differ-
ent ionic membrane models.(a) A two-current model.(b) A three-
current model. The dynamic RC(solid) and local S1-S2 RCs
(dashed) are shown for different values of S1.
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shades of gray correspond to different transmembrane volt-
ages, with black corresponding to the rest potential. Note that
projecting the wave fronts and wave backs onto thext plane
forms a sequence of curves.

Results of numerical simulations of Eq.(1) with the two-
current ionic model(no memory) are presented in Fig. 3,
which shows wave front[Fig. 3(a)] and wave back[Fig.
3(b)] velocity RCs. One can see from Fig. 3(a) that the wave-
front velocity RCs resulting from different pacing protocols
are indistinguishable. Thus, there is no significant rate depen-
dence if velocities are measured at the wave front. However,
one can see from Fig. 3(b) that segments of S1-S2 wave-
back velocity RCs(dashed curves) do not coincide with the
dynamic wave-back velocity RC(solid curve). As in the case
of APD rate dependence(see Fig. 1), the splitting between
wave-back velocity RCs is more pronounced for small val-
ues of DI.

Wave-front and wave-back velocity RCs obtained from
numerical simulations of a cable with the three-current ionic
model (that has some memory) are presented in Fig. 4. The

results are qualitatively similar to the two-current model re-
sults shown in Fig. 3.

There are two important points that we wish to empha-
size. First, rate-dependent wave-back velocity restitution
does not depend upon the presence of memory in the tissue,
as evidenced by our two-current model simulations. Second,
rate-dependent wave-back velocity is more pronounced for
small values of DI. In what follows, we provide an analytical
explanation of these findings.

III. RATE-DEPENDENT VELOCITY:
ANALYTICAL RESULTS

In this section, we derive a relationship between wave-
front and wave-back velocities. We approximate the dynam-
ics of Eq. (1) using mappings instead of ionic models, an
approach similar to[21,24–26]. Our analysis shows that
wave-back velocity differs from wave-front velocity as a re-
sult of spatial variation in APD[see Eq.(8) below]. Hence,
apart from the trivial case in which the APD RCs are con-
stant, a rate-dependent wave-back velocity can exist even if
the tissue lacks both memory and rate-dependent wave-front
velocity.

Mapping models that express the APD in terms of preced-
ing DI and APD values have been employed by many au-
thors [1,11,12,20,27] to describe local tissue dynamics. For
example, based on experiments with frog tissue, Nolasco and
Dahlen[1] proposed a simple mapping model of the form

An+1 = FsDnd, s2d

whereAn andDn denote thenth APD and DI values, respec-
tively. Using asymptotics, Mitchell and Schaeffer[18] derive

FIG. 2. Numerical solution of Eq.(1) with the two-current ionic
model.

FIG. 3. Wave-front and wave-back velocity RCs obtained from
numerical simulation of Eq.(1) with two-current ionic model(D
=40 ms,d= ±20 ms). Velocities were measured atx=2.5 cm. (a)
Wave-front velocity RCs.(b) Wave-back velocity RCs. The dy-
namic RC is solid and the local S1-S2 RCs are dashed.

FIG. 4. Wave-front and wave-back velocity RCs obtained from
numerical simulation of Eq.(1) with three-current ionic model(D
=40 ms,d= ±20 ms). Velocities were measured atx=2.5 cm. (a)
Wave-front velocity RCs.(b) Wave-back velocity RCs. The dy-
namic RC is solid and the local S1-S2 RCs are dashed.
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a mapping of the form(2) from the governing equations of a
two-current ionic model. A similar analysis by Tolkachevaet
al. [20] shows that the three-current Fenton-Karma ionic
model [19] leads to a mapping with two arguments:

An+1 = FsAn,Dnd. s3d

In general, the number of arguments ofF determines how
much memory is present. The mapping model(2) has no
memory, and all APD RCs coincide as in Fig. 1(a). The
mapping model(3) has some memory, and the dynamic and
S1-S2 RCs are different as in Fig. 1(b). Below, we consider
mappings in whichF has many arguments.

We now generalize mapping models appropriate for a
patch to the case of one-dimensional fibers. In what follows,
we assume that wave backs are not greatly affected by elec-
trotonic coupling so that repolarization is driven by local
effects only. That is, using the terminology of[28,29], we
consider phase wave backs as opposed to triggered wave
backs. This assumption allows us to apply a mapping locally
at eachx along the fiber[see Eq.(4) below].

We represent the wave fronts and wave backs in solutions
of Eq. (1) schematically. Refer to Fig. 5, which shows the
projection of a particular level set of the surface in Fig. 2
onto thext plane. The curves in Fig. 5 are identified with the
sequence of wave fronts and wave backs. We definefnsxd
fbnsxdg as the time at which thenth wave front(wave back)
reachesx.

Let us assume that, at eachx along the fiber, the APD can
be represented as a function of an arbitrary number of pre-
ceding APDs and DIs in the form

An+1sxd = F„Ansxd,Dnsxd…, s4d

i.e., an arbitrary amount of memory is included. Here,

Ansxd = „Ansxd,An−1sxd, . . . ,An+1−msxd…, s5d

Dnsxd = „Dnsxd,Dn−1sxd, . . . ,Dn+1−ksxd…,

and mù0 and kù1 are integers characterizing how many
preceding states are taken into account in the mapping
model. Since many previous states are involved, Eq.(4)
makes sense only form,køn. Note thatm=0, k=1 corre-
sponds to the simplest mapping model Eq.(2), the case of no
memory. The casem=1, k=1 corresponds to a mapping of
the form of Eq.(3) with some memory.

Let us also assume that the velocity of thesn+1dst wave
front, cfront(Ansxd ,Dnsxd), depends upon preceding(local)
APD and DI values. This velocity is computed by inverting
the slope offn+1sxd:

dfn+1sxd
dx

=
1

cfront„Ansxd,Dnsxd…
; G„Ansxd,Dnsxd…. s6d

Using the above framework, the wave-back velocitycback
is completely determined by the wave-front velocity. Refer-
ring to Fig. 5, note that

bn+1sxd = fn+1sxd + An+1sxd. s7d

Differentiating Eq.(7) with respect tox yields a relationship
between wave-front and wave-back velocities. Simply stated,

1

cback
=

1

cfront
+ An+18 sxd, s8d

which shows that the wave-back velocity is the same as the
wave-front velocity modified by the spatial variation in the
APD. Assuming that the APD RCs are nonconstant, it fol-
lows that even in the absence of both memory and rate-
dependent wave-front velocity, the fiber can still exhibit rate-
dependent wave-back velocity. To make Eq.(8) more
explicit, we now compare wave-front and wave-back veloci-
ties for both the dynamic and S1-S2 protocols.

A. Dynamic pacing protocol

Under the dynamic pacing protocol, pacing is performed
at a constant basic cycle lengthB at x=0 until steady state is
reached. In what follows, we assume that a 1:1 steady-state
response results from dynamic pacing. That is, every stimu-
lus produces an action potential and there is no beat-to-beat
variation in the APD or DI. Note thatfnsxd and bnsxd are
parallel2 lines in thext plane if a 1:1 steady state is reached.

When steady state is reached, the vectorsAnsxd andDnsxd
are constant:

Ansxd = A* ; sA* ,A* , . . .A*d, s9d

Dnsxd = D* ; sD* ,D* , . . .D*d,

and sA* ,D*d is the fixed point of Eq. (4). Plotting
cfrontsA* ,D*d versusD* , we obtain a point on the dynamic
wave-front velocity RC. The curvesbn+1sxd andfn+1sxd have
the same slope since they are parallel at steady state:
bn+1sxd=fn+1sxd+A* . Therefore, since there is no spatial
variation in the APD, the dynamic wave-back and wave-front
velocity RCs are identical. Hence, from now on we refer to
the dynamic velocity RC and use the notationcdyn
=cdynsD*d.

Defining the cycle length as

2In the ordinary differential equations derived in Sec. III, pacing is
applied at thex=0 boundary, not over a small intervalf0,eg. There-
fore, in steady state, the wave fronts and wave backs really are
straight lines.

FIG. 5. Schematic representation of the wave fronts(solid
curves) and wave backs(dashed curves) in Fig. 2.
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Cnsxd = Ansxd + Dnsxd = fn+1sxd − fnsxd, s10d

it follows from Eq. (6) that

d

dx
Cnsxd = G„Ansxd,Dnsxd… − G„An−1sxd,Dn−1sxd…. s11d

According to Eqs.(10) and(4), the cycle length also satisfies
the algebraic condition

Cnsxd = F„An−1sxd,Dn−1sxd… + Dnsxd, s12d

and thus Eqs.(11) and (12) imply that

d

dx
fF„An−1sxd,Dn−1sxd… + Dnsxdg

= G„Ansxd,Dnsxd… − G„An−1sxd,Dn−1sxd…. s13d

SinceCns0d=B for all n under the dynamic pacing protocol,
we obtain the following boundary condition atx=0:

Dns0d = B − F„An−1s0d,Dn−1s0d…. s14d

The sequence of equations Eq.(13) can be solved iteratively
to construct a diagram similar to Fig. 5. If the vectors of
functions Ansxd and Dn−1sxd are known, we can solve Eq.
(13) to determineDnsxd. Note thatAn+1sxd can then be com-
puted by applying Eq.(4).

B. S1-S2 pacing protocol

In the S1-S2 protocol, tissue is paced at a basic cycle
lengthB until steady state is reached. Then, an S2 stimulus is
introduced at an intervalB1=B±d following the last S1
stimulus and the response to the S2 stimulus is measured. In
what follows, we assume that the S2 stimulus is applied pre-
maturely sB1=B−dd following a train of n S1 stimuli. The
S2 stimulus causes a deflection in thesn+1dst wave front
and wave back as shown in Fig. 6.

These assumptions imply that

Ansxd = A* , s15d

Dnsxd = „Dnsxd,D* , . . . ,D*
…,

and yield the boundary condition

Dns0d = B1 − A* . s16d

Equation(13) reduces to

dDnsxd
dx

= G„A* ,Dnsxd… − G* , s17d

where G* =GsA* ,D*d=cdyn
−1 . Linearizing Eq.(17) about the

point sA* ,D*d, we have

dDnsxd
dx

= − lfDnsxd − D*g, s18d

where

l = U−
] G

] Dn
U

sA* ,D* d
. s19d

Sincecfront typically depends monotonically on the argument
Dn [see Fig. 3(a)], it is natural to assume thatl.0. The
solution of Eq.(18) with the boundary condition(16) is

Dnsxd = D* − de−lx. s20d

Let cfront
S12 and cback

S12 denote the wave-front and wave-back
velocities of the action potential generated by the S2 stimu-
lus. In order to computecfront

S12 , observe that(see Fig. 6)

fn+1sxd = bnsxd + Dnsxd. s21d

We know thatfnsxd andbnsxd are parallel since they repre-
sent the wave front and wave back associated with the final
S1 stimulus. Therefore,dbn/dx=dfn/dx=G* , and differen-
tiating Eq.(21) with respect tox gives

cfront
S12 =

1

G* + dle−lx . s22d

According to Eq.(15), the only nonconstant argument of
the function F is Dnsxd. Therefore, differentiating Eq.(7)
with respect tox gives

dbn+1

dx
=

dfn+1

dx
+

] F

] Dn

dDn

dx
= G* + dle−lxS1 +

] F

] Dn
D ,

s23d

which implies that

cback
S12 =

1

G* + dle−lxs1 + ] F/] Dnd
. s24d

The partial derivative]F /]Dn in Eq. (24) is evaluated at
sA* ,D* −de−lx,D* , . . . ,D*d. Equations(22) and(24) are ana-
lytical expressions for the wave-front and wave-back veloc-
ity for the S1-S2 pacing protocol.

Comparing Eqs.(22) and (24) again demonstrates that
APD restitution, not memory, is responsible for the rate de-
pendence we study here. Indeed, the only difference between
expressions(22) and (24) is the presence of the multiplier
s1+]F /]Dnd in the formula for the wave-back velocity. The
partial derivative]F /]Dn in Eq. (24) represents the slopeS12
of the S1-S2 APD RC as demonstrated in[9]. As the DI
decreases,S12 typically increases, thereby increasing the dis-
crepancy between the wave-front and wave-back velocities.

FIG. 6. Deflection of thesn+1dst wave front and wave back due
to a prematuresB1,Bd S2 stimulus. The shortened diastolic inter-
val at the stimulus site slows the propagation speed. Solid curves
represent wave fronts and dashed curves represent wave backs.
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Finally, regardless of how much memory is included in the
mapping model, Eqs.(22) and (24) depend uponDnsxd and
no other preceding states.

C. An example: Rate-dependent velocity (9)and the two-
current model

In this subsection, we explain how to apply Eqs.(22) and
(24), using the two-current model as an example. Both Eqs.
(22) and(24) require that we know formulas for the dynamic
velocity RC (since G* =cdyn

−1 ) and the functionF. Leading-
order expressions forF andcdyn can be derived analytically
for the two-current model(see the Appendix).

The dynamic velocity RC is provided by Eq.(A9). Com-
bining Eqs.(22) and(A9), we generate all S1-S2 wave-front
velocity RCs. Likewise, combining Eqs.(24), (A3), and(A9)
allows us to construct all S1-S2 wave-back velocity RCs.

All of the analytically derived RCs are shown in Fig. 7.
Figure 7(a) shows all wave-front velocity RCs. The dynamic
and S1-S2 wave-front velocity RCs are indistinguishable.
The wave-back velocity RCs are shown in Fig. 7(b). Note
the presence of rate dependence, as evidenced by the split-
ting of the dynamic(solid) and S1-S2(dashed) RCs. We
remark that Fig. 7 shows excellent quantitative agreement
with the results of numerical simulations shown in Fig. 3.

IV. CONCLUSIONS

We have demonstrated that a rate-dependent wave-back
velocity can exist even in the absence of both memory and
rate-dependent wave-front velocity. Our numerical simula-

tions show that both the two- and three-current models ex-
hibit rate-dependent wave-back velocity, whereas neither
model exhibits rate-dependent wave-front velocity. The fact
that even a memoryless two-current model that lacks rate-
dependent wave-front velocity still exhibits rate-dependent
wave-back velocity seems surprising at first. To explain this
phenomenon analytically, using an approach similar to that
of [21,24–26], we derive a relationship between the wave-
front and wave-back speeds. Although the dynamic wave-
front and wave-back velocity RCs are identical, the fact that
Eqs.(22) and(24) differ shows that S1-S2 velocity RCs need
not coincide. Therefore, if the wave-front(wave-back) veloc-
ity lacks rate dependence, then the wave-back(wave-front)
velocity must exhibit rate dependence. The magnitude of the
term s1+]F /]Dnd in Eq. (24) determines the difference be-
tween the S1-S2 wave-front and wave-back velocities. Since
the partial derivativeS12=]F /]Dn represents the slope of an
S1-S2 APD RC, the greatest discrepancy between the wave-
front and wave-back velocities should occur at small DI
(whereS12 is greatest). This prediction is consistent with the
results of our numerical simulations(Figs. 3 and 4).
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APPENDIX

A detailed analysis of the two-current model equations
appears in[18]. With the two-current model, Eq.(1) reads

] v
] t

= k
]2v
] x2 +

h

tin
v2s1 − vd −

v
tout

, sA1d

dh

dt
=5

1 − h

topen
, v , vcrit,

−
h

tclose
, v . vcrit,

sA2d

wherev is the transmembrane voltage(scaled to range be-
tween 0 and 1) andh is a gate variable. The parameterstin,
tclose, tout, and topen are time constants associated with dif-
ferent phases of the action potential. The gate opens or closes
according to whetherv exceeds the threshold voltagevcrit.
Typical choices for the time constants and critical voltage are
tin=0.1 ms,tout=2.4 ms,topen=130 ms,tclose=150 ms, and
vcrit=0.13.

A leading-order estimate of the APD RC is derived in
[18]. If the time constants satisfy an asymptotic condition
tin!tout!topen,tclose, then

An+1 = FsDnd = tcloselnShssDnd
hmin

D sA3d

to leading order, where

FIG. 7. Wave-front and wave-back velocity RCs generated us-
ing Eqs.(22), (24), (A3), and(A9) (D=40 ms,d= ±20 ms). Veloci-
ties were measured atx=2.5 cm.(a) Wave-front velocity RCs: the
dynamic and S1-S2 curves appear to coincide.(b) Wave-back ve-
locity RCs: the dynamic curve is solid and local S1-S2 curves are
dashed.
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hssDnd = 1 − s1 − hminde−Dn/topen, sA4d

andhmin=4tin /tout.
To derive a leading-order estimate ofcdyn, we follow Mur-

ray [30]. Assume the fiber is paced at a constant basic cycle
length until steady state is reached so that all pulses propa-
gate with speedcdyn=cdynsD*d. We seek traveling wave train
solutions to Eq.(A1). In the neighborhood of a wave front,
introduce the coordinate

j =
1

tin
St +

x

cdyn
D , sA5d

where the speedcdyn is to be determined. Assume that
vsx,td=Vsjd and hsx,td=Hsjd. Sincetin is small relative to
the time constants in Eq.(A2), we may safely approximate
the value ofh by a constant in the narrow wave-front region:
h<h* ;hssD*d. Insertingvsx,td=Vsjd into Eq. (A1), we ob-
tain an ordinary differential equation

k

cdyn
2 tin

V9 − V8 + h*VsV− − VdsV − V+d = 0, sA6d

where the primes denote differentiation with respect toj and

V± =
1

2
S1 ±Î1 −

hmin

h* D . sA7d

We remark thatV− is an unstable equilibrium of Eq.(A6)
corresponding to the threshold for excitation, andV+ is an
unstable equilibrium associated with the excited state. We
seek solutions to Eq.(A6) such thatVsjd→0 asj→−` and
Vsjd→V+ as j→`. It is possible to find a solution of a
simpler differential equation

V8 = − aVsV − V+d sA8d

that also satisfies Eq.(A6) for unique values of the constant
a and the speedcdyn. Substituting(A8) into Eq. (A6), one
finds that

cdyn = S1

2
V+ − V−DÎ2kh*

tin
. sA9d
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